Národní úložiště šedé literatury Nalezeno 8 záznamů.  Hledání trvalo 0.00 vteřin. 
Functional analysis of hPrp8 mutations linked to retinitis pigmentosa.
Matějů, Daniel ; Cvačková, Zuzana (vedoucí práce) ; Král, Vlastimil (oponent)
hPrp8 je esenciální faktor účastnící se sestřihu pre-mRNA. Tento vysoce konzervovaný protein je součástí U5 malé jaderné ribonukleoproteinové částice (U5 snRNP), která představuje jednu ze základních komponent spliceozomu. hPrp8 působí jako klíčový regulátor aktivace spliceozomu a interaguje přímo s U5 snRNA a s oblastmi pre-mRNA, které se účastní transesterifikačních reakcí během sestřihu. Mutace v hPrp8 způsobují autozomálně dominantní formu retinitis pigmentosa (RP), dědičného onemocnění, které vede k postupné degeneraci sítnice. V této práci jsme zkoumali, jak mutace spojené s RP ovlivňují funkci proteinu hPrp8. Použili jsme metodu 'BAC recombineering' k vytvoření mutovaných variant hPrp8-GFP a připravili jsme stabilní buněčné linie exprimující tyto rekombinantní proteiny. Mutované proteiny byly exprimovány a lokalizovány do jádra, avšak jedna z bodových mutací výrazně ovlivnila lokalizaci a stabilitu hPrp8. Další experimenty napověděly, že mutace spojené s RP ovlivňují schopnost hPrp8 interagovat s dalšími komponenty U5 snRNP a s pre-mRNA. Dále jsme studovali biogenezi U5 snRNP komplexů. Pomocí siRNA jsme odstranili hPrp8 a narušili tak formování U5 snRNP komplexu. Zjistili jsme, že nekompletní U5 snRNP komplexy se hromadí v Cajalových tělískách, což značí, že tyto jaderné struktury hrají roli...
Quality control in snRNP biogenesis
Roithová, Adriana ; Staněk, David (vedoucí práce) ; Malínský, Jan (oponent) ; Vomastek, Tomáš (oponent)
v češtině snRNP patří k nejdůležitějším částem sestřihového komplexu. Jejich životní cyklus se odehrává v cytoplasmě, kde probíhají první fáze jejich biogeneze, a také v jádře, kde plní svoji hlavní funkci. Všechny snRNP jsou složeny z krátké nekódující RNA, z Sm či LSm proteinů tvořící 7-členný kruh a z proteinů specifických pro každý snRNP. Jejich životní cyklus začíná v jádře, kde jsou transkribovány RNA polymerázou II nebo III. Poté jsou transportovány do cytoplasmy. Během své cytoplasmatické fáze se formuje Sm kruh kolem specifické sekvence na RNA pomocí SMN komplexu a následně se trimetyluje čepička na 5'konci snRNA. Tyto 2 úpravy jsou signálem, že je snRNP připravena na transport do jádra, kde je hromaděna v jaderných strukturách nazývající se Cajalova tělíska. V Cajalových tělískách probíhá finální část jejich zrání. Průběh snRNP biogeneze je průběžně kontrolován. První kontrola probíhá v jádře ihned po jejich transkripci a následuje vytvoření exportního komplexu. Druhý kontrolní bod je v cytoplasmě a zahrnuje tvorbu Sm kruhu. Víme, že Sm kruh je tvořen SMN komplexem ale detailní mechanismus je stále neznámý. Pokud snRNA neprojde těmito kontrolními body, tak je v cytoplasmě degradována. Avšak, jak buňka rozlišuje mezi normálními a defektními snRNA se stále neví. Třetí a poslední kontrolní...
Study of the organization and dynamics of the membraneless cell compartments
Blažíková, Michaela
doktorské práce Název práce: Studium organizace a dynamiky bezmembránových buněčných kompartmentů Autor: Michaela Blažíková Ústav: Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Vedoucí práce: Doc. RNDr. Petr Heřman, CSc., Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Abstrakt Eukaryotické buňky obsahují množství organel a specifických tělísek. Kromě organel ohraničených membránou jako je např. buněčné jádro, mitochondrie nebo Golgiho aparát, jsou v buňkách i strukturně a funkčně rozlišené bezmembránové struktury. Tato práce se zabývá samo- organizačními procesy, tj. procesy nevyžadujícími specifické interakce, bezmembránových struktur v jádře, cytoplazmě a plasmatické membráně savčích buněk a kvasinek. Konkrétně se jedná o výzkum formace jadérek a Cajalových tělísek v savčím buněčném jádře a processing bodies (P-bodies) v cytoplasmě savčích buněk. Byla též studována organizace MCC domén v plasmatické membráně kvasinek (Membrane compartment of Can1). Bylo ukázáno, že nespecifické interakce v důsledku molekulárního crowdingu mohou být jednou z hlavních hnacích sil formování a stabilizace těchto vysoce dynamických struktur.
Quality control in snRNP biogenesis
Roithová, Adriana ; Staněk, David (vedoucí práce) ; Malínský, Jan (oponent) ; Vomastek, Tomáš (oponent)
v češtině snRNP patří k nejdůležitějším částem sestřihového komplexu. Jejich životní cyklus se odehrává v cytoplasmě, kde probíhají první fáze jejich biogeneze, a také v jádře, kde plní svoji hlavní funkci. Všechny snRNP jsou složeny z krátké nekódující RNA, z Sm či LSm proteinů tvořící 7-členný kruh a z proteinů specifických pro každý snRNP. Jejich životní cyklus začíná v jádře, kde jsou transkribovány RNA polymerázou II nebo III. Poté jsou transportovány do cytoplasmy. Během své cytoplasmatické fáze se formuje Sm kruh kolem specifické sekvence na RNA pomocí SMN komplexu a následně se trimetyluje čepička na 5'konci snRNA. Tyto 2 úpravy jsou signálem, že je snRNP připravena na transport do jádra, kde je hromaděna v jaderných strukturách nazývající se Cajalova tělíska. V Cajalových tělískách probíhá finální část jejich zrání. Průběh snRNP biogeneze je průběžně kontrolován. První kontrola probíhá v jádře ihned po jejich transkripci a následuje vytvoření exportního komplexu. Druhý kontrolní bod je v cytoplasmě a zahrnuje tvorbu Sm kruhu. Víme, že Sm kruh je tvořen SMN komplexem ale detailní mechanismus je stále neznámý. Pokud snRNA neprojde těmito kontrolními body, tak je v cytoplasmě degradována. Avšak, jak buňka rozlišuje mezi normálními a defektními snRNA se stále neví. Třetí a poslední kontrolní...
Study of the organization and dynamics of the membraneless cell compartments
Blažíková, Michaela
doktorské práce Název práce: Studium organizace a dynamiky bezmembránových buněčných kompartmentů Autor: Michaela Blažíková Ústav: Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Vedoucí práce: Doc. RNDr. Petr Heřman, CSc., Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Abstrakt Eukaryotické buňky obsahují množství organel a specifických tělísek. Kromě organel ohraničených membránou jako je např. buněčné jádro, mitochondrie nebo Golgiho aparát, jsou v buňkách i strukturně a funkčně rozlišené bezmembránové struktury. Tato práce se zabývá samo- organizačními procesy, tj. procesy nevyžadujícími specifické interakce, bezmembránových struktur v jádře, cytoplazmě a plasmatické membráně savčích buněk a kvasinek. Konkrétně se jedná o výzkum formace jadérek a Cajalových tělísek v savčím buněčném jádře a processing bodies (P-bodies) v cytoplasmě savčích buněk. Byla též studována organizace MCC domén v plasmatické membráně kvasinek (Membrane compartment of Can1). Bylo ukázáno, že nespecifické interakce v důsledku molekulárního crowdingu mohou být jednou z hlavních hnacích sil formování a stabilizace těchto vysoce dynamických struktur.
Transport U2 snRNA do Cajalových tělísek
Roithová, Adriana ; Staněk, David (vedoucí práce) ; Mašek, Tomáš (oponent)
V jádře buňky můžeme nalézt velké množství malých nekódujících RNA, které zastávají nejrůznější důležité funkce. Mezi ně řadíme i malé jaderné RNA bohaté na uridin zvané U snRNA, které společně s proteiny tvoří U snRNP. Tyto částice hrají velmi důležitou roli v sestřihu pre-mRNA. Při tomto procesu jsou odstraňovány nekódující sekvence zvané introny a spojovány kódující sekvence zvané exony. Vše je katalyzováno sestřihovým komplexem, jehož jádro je tvořeno U1, U2, U4, U5 a U6 snRNP. Tyto částice jsou pro tuto posttrasnkripční úpravu zcela nepostradatelné. Některé kroky formování těchto U snRNP probíhají v jaderných strukturách zvaných Cajalovo tělísko (CB). V mé práci jsem se zaměřila na faktory, které jsou důležité pro cílení snRNA do Cajalových tělísek. Jako modelovou snRNA jsem použila U2 snRNA. Pomocí mikroinjekce fluorescenčně značených zkrácených U2 snRNA jsem zjistila, že pro cílení do CB je nezbytná sekvence, na kterou se váží Sm proteiny. Deplece Sm proteinu SmB/B'nám ukázala, že Sm proteiny jsou pro lokalizaci U2 snRNA do CB esenciální. Sm proteiny jsou formovány na U2 snRNA pomocí SMN komplexu. Odstranění sekvence v U2 snRNA, na kterou se SMN komplex váže, mělo stejný inhibiční efekt na cílení do CB jako deplece Sm proteinu. Z čehož vyplývá, že Sm proteiny a SMN komplex jsou nezbytné pro...
Study of the organization and dynamics of the membraneless cell compartments
Blažíková, Michaela ; Heřman, Petr (vedoucí práce) ; Cmarko, Dušan (oponent) ; Hašek, Jiří (oponent)
doktorské práce Název práce: Studium organizace a dynamiky bezmembránových buněčných kompartmentů Autor: Michaela Blažíková Ústav: Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Vedoucí práce: Doc. RNDr. Petr Heřman, CSc., Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Fyzikální ústav UK Abstrakt Eukaryotické buňky obsahují množství organel a specifických tělísek. Kromě organel ohraničených membránou jako je např. buněčné jádro, mitochondrie nebo Golgiho aparát, jsou v buňkách i strukturně a funkčně rozlišené bezmembránové struktury. Tato práce se zabývá samo- organizačními procesy, tj. procesy nevyžadujícími specifické interakce, bezmembránových struktur v jádře, cytoplazmě a plasmatické membráně savčích buněk a kvasinek. Konkrétně se jedná o výzkum formace jadérek a Cajalových tělísek v savčím buněčném jádře a processing bodies (P-bodies) v cytoplasmě savčích buněk. Byla též studována organizace MCC domén v plasmatické membráně kvasinek (Membrane compartment of Can1). Bylo ukázáno, že nespecifické interakce v důsledku molekulárního crowdingu mohou být jednou z hlavních hnacích sil formování a stabilizace těchto vysoce dynamických struktur.
Functional analysis of hPrp8 mutations linked to retinitis pigmentosa.
Matějů, Daniel ; Cvačková, Zuzana (vedoucí práce) ; Král, Vlastimil (oponent)
hPrp8 je esenciální faktor účastnící se sestřihu pre-mRNA. Tento vysoce konzervovaný protein je součástí U5 malé jaderné ribonukleoproteinové částice (U5 snRNP), která představuje jednu ze základních komponent spliceozomu. hPrp8 působí jako klíčový regulátor aktivace spliceozomu a interaguje přímo s U5 snRNA a s oblastmi pre-mRNA, které se účastní transesterifikačních reakcí během sestřihu. Mutace v hPrp8 způsobují autozomálně dominantní formu retinitis pigmentosa (RP), dědičného onemocnění, které vede k postupné degeneraci sítnice. V této práci jsme zkoumali, jak mutace spojené s RP ovlivňují funkci proteinu hPrp8. Použili jsme metodu 'BAC recombineering' k vytvoření mutovaných variant hPrp8-GFP a připravili jsme stabilní buněčné linie exprimující tyto rekombinantní proteiny. Mutované proteiny byly exprimovány a lokalizovány do jádra, avšak jedna z bodových mutací výrazně ovlivnila lokalizaci a stabilitu hPrp8. Další experimenty napověděly, že mutace spojené s RP ovlivňují schopnost hPrp8 interagovat s dalšími komponenty U5 snRNP a s pre-mRNA. Dále jsme studovali biogenezi U5 snRNP komplexů. Pomocí siRNA jsme odstranili hPrp8 a narušili tak formování U5 snRNP komplexu. Zjistili jsme, že nekompletní U5 snRNP komplexy se hromadí v Cajalových tělískách, což značí, že tyto jaderné struktury hrají roli...

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.